Studying Social Inequality
 with Data Science

Causal Assumptions

Learning goals for today

By the end of class, you will be able to

- Formalize causal assumptions in Directed Acyclic Graphs (DAGs)
- Use DAGs to find a sufficient adjustment set of variables within which a statistical association is causal

What is a Directed Acyclic Graph (DAG)?

What is a Directed Acyclic Graph (DAG)?

A DAG is a formal graph, used for causal assumptions

What is a Directed Acyclic Graph (DAG)?

A DAG is a formal graph, used for causal assumptions

- Each node is a variable
- Each edge is a causal relation

What is a Directed Acyclic Graph (DAG)?

A DAG is a formal graph, used for causal assumptions

- Each node is a variable
- Each edge is a causal relation

- Directed: Every edge has an arrow. Causality flows one way.

What is a Directed Acyclic Graph (DAG)?

A DAG is a formal graph, used for causal assumptions

- Each node is a variable
- Each edge is a causal relation

- Directed: Every edge has an arrow. Causality flows one way.
- Acyclic: There are no cycles

What is a Directed Acyclic Graph (DAG)?

A DAG is a formal graph, used for causal assumptions

- Each node is a variable
- Each edge is a causal relation

- Directed: Every edge has an arrow. Causality flows one way.
- Acyclic: There are no cycles

Not DAGs:

Why draw a DAG?

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

College \longrightarrow Earnings

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

High school
performance
College \longrightarrow Earnings

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Why draw a DAG?

Causal assumptions become

- visually intuitive
- mathematically precise

Causal origins of statistical associations

Causal origins of statistical associations

There are two reasons A and Y can be associated

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$

$$
\begin{array}{cl}
A \longrightarrow Y \\
\text { You finished college } & \text { Your pay }
\end{array}
$$

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

$$
\begin{array}{cl}
A \longrightarrow Y \\
\text { You finished college } & \text { Your pay }
\end{array}
$$

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

Your parent finished college
You finished college
Your pay

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

To block this backdoor path, condition on C

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

To block this backdoor path, condition on C

- Analyze within subgroups defined by C

Causal origins of statistical associations

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving
- unblocked forks $A \leftarrow C \rightarrow Y$
- or blocked colliders $A \rightarrow C \leftarrow Y$

To block this backdoor path, condition on C

- Analyze within subgroups defined by C

Colliders ${ }^{1}$

${ }^{1}$ Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders ${ }^{1}$

Suppose I have sprinklers on a timer.
${ }^{1}$ Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders ${ }^{1}$

Suppose I have sprinklers on a timer.

${ }^{1}$ Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders ${ }^{1}$

Suppose I have sprinklers on a timer.

We say Y is a collider along the path $X_{1} \rightarrow Y \leftarrow X_{2}$
${ }^{1}$ Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders ${ }^{1}$

Suppose I have sprinklers on a timer.

We say Y is a collider along the path $X_{1} \rightarrow Y \leftarrow X_{2}$

- The collider blocks the path
${ }^{1}$ Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders ${ }^{1}$

Suppose I have sprinklers on a timer.

We say Y is a collider along the path $X_{1} \rightarrow Y \leftarrow X_{2}$

- The collider blocks the path
- X_{1} is independent of X_{2}
- (Sprinklers On) is uninformative about (Raining)
${ }^{1}$ Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders ${ }^{1}$

Suppose I have sprinklers on a timer.

We say Y is a collider along the path $X_{1} \rightarrow Y \leftarrow X_{2}$

- The collider blocks the path
- X_{1} is independent of X_{2}
- (Sprinklers On) is uninformative about (Raining)
- Conditioning on Y opens the path
- If the grass is wet (conditional on $Y=1$), then either (Sprinklers On) or (Raining)

[^0]
Ancestors vs. Colliders

Conditioning on an ancestor closes an open path

Conditioning on an collider opens a closed path

Ancestors vs. Colliders

Conditioning on an ancestor closes an open path

Example

- X is your parent's education
- A is your education
$-Y$ is your pay

Conditioning on an collider opens a closed path

Example

- X_{1} is sprinklers on
- X_{2} is rain
- Y is wet grass

Ancestors vs. Colliders

Conditioning on an ancestor closes an open path

Example

- X is your parent's education
- A is your education
- Y is your pay

In the population,
A and Y are related

Conditioning on an collider opens a closed path

Example

- X_{1} is sprinklers on
$-X_{2}$ is rain
$-Y$ is wet grass
In the population, X_{1} and X_{2} are independent

Ancestors vs. Colliders

Conditioning on an ancestor closes an open path

Example

- X is your parent's education
- A is your education
$-Y$ is your pay
In the population,
A and Y are related
Within strata of X,
A and Y are independent

Conditioning on an collider opens a closed path

Example

- X_{1} is sprinklers on
$-X_{2}$ is rain
$-Y$ is wet grass
In the population, X_{1} and X_{2} are independent

Within strata of Y,
X_{1} and X_{2} are related

How to find adjustment variables to identify causal effects

Goal:

Block all backdoor paths so treatment A and outcome Y are associated only by the causal path

How to find adjustment variables to identify causal effects

Goal:

Block all backdoor paths so treatment A and outcome Y are associated only by the causal path

Backdoor path: Any sequence of edges $A \leftarrow$ nodes $\rightarrow Y$
Blocked if it contains an adjusted variable along a fork

Blocked if it contains an unadjusted collider

$$
A \rightarrow C \leftarrow Y
$$

Exercise 1

Find adjustment sets that identify the effect of A on Y

Exercise 1

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

Exercise 1

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

- Condition on $X_{1}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$

Exercise 1

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

- Condition on $X_{1}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$
- Condition on $X_{2}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$

Exercise 1

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

- Condition on $X_{1}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$
- Condition on $X_{2}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$
- Condition on $X_{3}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$

Exercise 1

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

- Condition on $X_{1}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$
- Condition on $X_{2}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$
- Condition on $X_{3}: A \leftarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow Y$
- Any combination of the above

Exercise 2

Find 3 sufficient adjustment sets to identify $A \rightarrow Y$

Exercise 2

Find 3 sufficient adjustment sets to identify $A \rightarrow Y$

Answer: $\left\{X_{2}\right\},\left\{X_{1}, X_{3}\right\},\left\{X_{1}, X_{2}, X_{3}\right\}$

Exercise 3

What is the smallest adjustment set that identifies $A \rightarrow Y$?

Exercise 3

What is the smallest adjustment set that identifies $A \rightarrow Y$?

Answer: The empty set! Don't condition on anything. The collider X_{2} already blocks the path.

Learning goals for today

By the end of class, you will be able to

- Formalize causal assumptions in Directed Acyclic Graphs (DAGs)
- Use DAGs to find a sufficient adjustment set of variables within which a statistical association is causal

[^0]: ${ }^{1}$ Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

