Studying Social Inequality with Data Science

INFO 3370 / 5371 Spring 2023

Causal Assumptions

By the end of class, you will be able to

- Formalize causal assumptions in Directed Acyclic Graphs (DAGs)
- Use DAGs to find a sufficient adjustment set of variables within which a statistical association is causal

A DAG is a formal graph, used for causal assumptions

A DAG is a formal graph, used for causal assumptions

- Each **node** is a variable
- Each edge is a causal relation

 $A \xrightarrow{\mathcal{P}} C$

A DAG is a formal graph, used for causal assumptions

- Each **node** is a variable
- Each edge is a causal relation

► Directed: Every edge has an arrow. Causality flows one way.

A DAG is a formal graph, used for causal assumptions

- Each **node** is a variable
- Each edge is a causal relation

- ► Directed: Every edge has an arrow. Causality flows one way.
- Acyclic: There are no cycles

A DAG is a formal graph, used for causal assumptions

- Each **node** is a variable
- Each edge is a causal relation

$$A \xrightarrow{B} C$$

- ▶ Directed: Every edge has an arrow. Causality flows one way.
- ► Acyclic: There are no cycles

Not DAGs:
$$A \xrightarrow{B} A \xrightarrow{B} C$$

A $A \xrightarrow{T} A \xrightarrow{T} C$
Undirected Cyclic

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

- ► visually intuitive
- mathematically precise

There are two reasons A and Y can be associated

There are two reasons A and Y can be associated

• A causal path: $A \rightarrow Y$

There are two reasons A and Y can be associated

• A causal path: $A \rightarrow Y$

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving

 - unblocked forks A \leftarrow C \rightarrow Y
 or blocked colliders A \rightarrow C \leftarrow Y

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving

 - unblocked forks $A \leftarrow C \rightarrow Y$ or blocked colliders $A \rightarrow C \leftarrow Y$

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- ► A backdoor path involving

• or blocked colliders $A \to C \leftarrow Y$

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- ► A backdoor path involving

• unblocked forks
$$A \leftarrow C \rightarrow Y$$

• or blocked colliders $A \rightarrow C \leftarrow Y$

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- A backdoor path involving

 - unblocked forks A ← C → Y
 or blocked colliders A → C ← Y

There are two reasons A and Y can be associated

A backdoor path involving

• or blocked colliders $A \to C \leftarrow Y$

To block this backdoor path, condition on C (a confounder)

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- ► A backdoor path involving
 - unblocked forks $A \leftarrow C \rightarrow Y$
 - or blocked colliders $A \rightarrow C \leftarrow Y$

To block this backdoor path, condition on C (a confounder)

• Analyze within subgroups defined by C

There are two reasons A and Y can be associated

- A causal path: $A \rightarrow Y$
- ► A backdoor path involving
 - unblocked forks $A \leftarrow C \rightarrow Y$
 - or blocked colliders $A \rightarrow \boxed{C} \leftarrow Y$

To block this backdoor path, condition on C (a confounder)

• Analyze within subgroups defined by C

Colliders¹

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders¹

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

► The collider blocks the path

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

- ► The collider blocks the path
- X_1 is independent of X_2
 - ► (Sprinklers On) is uninformative about (Raining)

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

- ► The collider blocks the path
- X_1 is independent of X_2
 - (Sprinklers On) is uninformative about (Raining)
- Conditioning on Y opens the path
 - ► If the grass is wet (conditional on Y = 1), then either (Sprinklers On) or (Raining)

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Conditioning on an ancestor **closes** an open path

Conditioning on an collider opens a closed path

Conditioning on an ancestor **closes** an open path

Example

- -X is your parent's education
- -A is your education
- -Y is your pay

Conditioning on an collider opens a closed path

$$X_1$$

 X_2 Y

Example

$$-X_1$$
 is sprinklers on

$$-X_2$$
 is rain

Conditioning on an ancestor **closes** an open path

Example — X is your parent's education — A is your education — Y is your pay

In the population, A and Y are **related**

Conditioning on an collider opens a closed path

Example

$$-X_2$$
 is rain

In the population, X_1 and X_2 are **independent**

Conditioning on an ancestor **closes** an open path

Example — X is your parent's education — A is your education — Y is your pay

In the population, A and Y are **related**

Within strata of X, A and Y are **independent**

Conditioning on an collider opens a closed path

$$X_1$$

 X_2 Y

Example

$$-X_1$$
 is sprinklers on

$$-X_2$$
 is rain

In the population, X_1 and X_2 are **independent** Within strata of Y, X_1 and X_2 are **related**

How to find adjustment variables to identify causal effects

Goal:

Block all backdoor paths so treatment A and outcome Y are associated only by the causal path

How to find adjustment variables to identify causal effects

Goal:

Block all backdoor paths so treatment A and outcome Y are associated only by the causal path

Backdoor path: Any sequence of edges $A \leftarrow \text{nodes} \rightarrow Y$

Blocked if it contains an adjusted variable along a fork

$$\begin{array}{c} A \leftarrow \boxed{C} \rightarrow Y \\ A \leftarrow \boxed{C} \leftarrow \cdots \rightarrow Y \\ A \leftarrow \cdots \rightarrow \boxed{C} \rightarrow Y \end{array}$$

Blocked if it contains an unadjusted collider

$$A \rightarrow C \leftarrow Y$$

Find adjustment sets that identify the effect of A on Y

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

• Condition on
$$X_1: A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$$

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

• Condition on $X_1: A \leftarrow X_1 \to X_2 \to X_3 \to Y$

• Condition on
$$X_2$$
: $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

- Condition on $X_1: A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- Condition on X_2 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- Condition on X_3 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

- Condition on $X_1: A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- Condition on X_2 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- Condition on $X_3: A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- Any combination of the above

Find 3 sufficient adjustment sets to identify $A \rightarrow Y$

Find 3 sufficient adjustment sets to identify $A \rightarrow Y$

Answer: $\{X_2\}, \{X_1, X_3\}, \{X_1, X_2, X_3\}$

What is the smallest adjustment set that identifies $A \rightarrow Y$?

What is the smallest adjustment set that identifies $A \rightarrow Y$?

Answer: The empty set! Don't condition on anything. The collider X_2 already blocks the path. By the end of class, you will be able to

- Formalize causal assumptions in Directed Acyclic Graphs (DAGs)
- Use DAGs to find a sufficient adjustment set of variables within which a statistical association is causal