Studying Social Inequality with Data Science

INFO 3370 / 5371 Spring 2024

Predicting life outcomes

Results of the PSID Income Prediction Challenge

Learning goals for today

By the end of class, you will be able to

- know who had the best predictions!
- reason about predictability of life outcomes

Equality Opportunity and Prediction

Possible claim

To the degree that we can predict life outcomes,

people do not have equal opportunity

Equality Opportunity and Prediction

In supervised machine learning, the goal is to

- learn patterns in the available data
- predict outcomes for previously unseen cases

When a task involves unseen data,

mimic the task with data we have

Cases

Prepare environment

library(tidyverse)
library(rsample)
set.seed(14850)

Load data

learning <- read_csv("learning.csv") holdout_public <- read_csv("holdout_public.csv")</pre>

Create a train-test split within learning

```
Using the rsample package,
split <- learning |>
initial_split(prop = 0.5)
```


Cases

Learn candidates in the train set

```
candidate 1 <- lm(
 g3_log_income ~ g2_log_income,
 data = training(split)
)
candidate 2 <- lm(
 g3_log_income ~ g2_log_income + race + sex,
 data = training(split)
candidate_3 <- lm(
 g3_log_income ~ g2_log_income * race * sex,
 data = training(split)
```

Learn candidates in the train set

Evaluate performance on the test set. Choose a model

```
fitted |>
group_by(model) |>
mutate(error = g3_log_income - yhat) |>
mutate(squared_error = error ^ 2) |>
summarize(mse = mean(squared error))
```

```
## # A tibble: 3 x 2
## model mse
## <chr> <dbl>
## 1 candidate_1 0.439
## 2 candidate_2 0.437
## 3 candidate 3 0.477
```


Cases

Apply your chosen model

```
Learn in the full learning set
chosen <- lm(
  g3_log_income ~ g2_log_income +
    race + sex,
  data = learning
)
```

Predict for the holdout set

```
predicted <- holdout_public %>%
mutate(
    predicted = predict(
        chosen,
        newdata = holdout_public
    )
)
```

Summary

Your submissions

- 21 submissions
- 20 submissions predicting for all holdout cases
- ▶ 17 submissions with non-missing predictions
- 14 submissions by unique teams

$$R^2 = 1 - rac{\mathsf{MSE}_{\mathsf{Model}}}{\mathsf{MSE}_{\mathsf{No}\;\mathsf{Model}}}$$

- ▶ score of 1 = perfect! MSE_{Model} = 0
- score of 0 = no better than no model at all

How would you make sense of this?

our exercise was a particular case of a broader research project

Measuring the predictability of life outcomes with a scientific mass collaboration

Matthew J. Salganik^{a,1}, Jan Lundberg^a, Alexander T. Kindel^a, Caitlin E. Abearn^b, Khaled Al-Ghoneim^c, Abdullah Almaatoug^{d.e}. Drew M. Altschul⁴. Jennie E. Brand^{b.g}, Nicole Bohme Carnegie^h, Rvan James Comptonⁱ, Debanjan Dattaⁱ, Thomas Davidson^k, Anna Filippova^l, Connor Gilroy^m, Brian J. Goodeⁿ, Eaman Jahani^o, Ridhi Kashvap^{p,q,r}, Antie Kirchner^s, Stephen McKav^t, Allison C. Morgan^u, Alex Pentland^e, Kivan Polimis^v, Louis Raes^w⁽⁰⁾, Daniel E, Rigobon^x, Claudia V, Roberts^y, Diana M, Stanescu², Yoshihiko Suhara^e, Adaner Usmani^{aa}, Erik H. Wang², Muna Adem^{bb}, Abdulla Alhairi^{cc}, Bedoor AlShebli^{dd}, Redwane Amin^{ee}, Rvan B. Amos^y, Lisa P. Argyle^{ff} Livia Baer-Bositis⁹⁹, Moritz Büchi^{hh}, Bo-Ryehn Chungⁱⁱ, William Eggertⁱⁱ, Gregory Faletto^{kk}, Zhilin Fan^{II}, Jeremy Freese⁹⁹, Teiomay Gadgil^{mm}, Josh Gagné⁹⁹, Yue Gaoⁿⁿ, Andrew Halpern-Manners^{bb}, Sonia P. Hashim^y, Sonia Hausen⁹⁹, Guanhua He^{oo}, Kimberly Higuera⁹⁹, Bernie Hogan^{pp}, Ilana M. Horwitz^{qq}, Lisa M. Hummel⁹⁹, Naman Jain^x, Kun Jin^{re} D. David Jurgens³⁵, Patrick Kaminski^{bb,tt}, Areg Karapetvan^{uu,vv}, E. H. Kim⁹⁹, Ben Leizman^y, Najija Liu², Malte Möser^y, Andrew E. Mack², Mavank Mahajan^y, Noah Mandell^{ww}, Helge Marahrens^{bb}, Diana Mercado-Garcia^{qq}, Viola Mocz^{xx}, Katariina Mueller-Gastell⁹⁹, Ahmed Musse^{yy}, Qiankun Niu^{ee}, William Nowak^{zz}, Hamidreza Omidvar^{aaa}, Andrew Or^y, Karen Ouvang^y, Katy M. Pinto^{bbb}, Ethan Porter^{ccc}, Kristin E. Porter^{ddd}, Crystal Qian^y, Tamkinat Rauf⁹⁹, Anahit Sargsyan^{eee}, Thomas Schaffner^y, Landon Schnabel⁹⁹, Bryan Schonfeld^z, Ben Sender^{fff}, Jonathan D. Tang^y, Emma Tsurkov⁹⁹, Austin van Loon⁹⁹, Onur Varol^{999,hhh}, Xiafei Wangⁱⁱⁱ. Zhi Wang^{hh,jjj} Julia Wang^y, Flora Wang^{fff}, Samantha Weissman^y, Kirstie Whitaker^{kkk,ill}, Maria K, Wolters^{mmm}, Wei Lee Woonⁿⁿ, James Wu^{oco}, Catherine Wu^y, Kengran Yang^{aaa}, Jingwen Yin^{II}, Bingyu Zhao^{ppp}, Chenyun Zhu^{II}. Jeanne Brooks-Gunn^{qq,rrr}. Barbara E. Engelhardt^{y,ii}, Moritz Hardt^{sss}, Dean Knox², Karen Levv^{ttt}, Arvind Naravanan^y, Brandon M. Stewart^a, Duncan J. Watts^{uuu,vvv,www}, and Sara McLanahan^{a,1}

Six age 15 outcomes:

- ► GPA
- Material Hardship
- Grit
- Evicted
- Job training
- Job loss

441 registered participants

- social scientists and data scientists
- undergraduates, grad students, and professionals
- many working in teams

How did they do?

Best algorithms were not very accurate

Lundberg et al. 2024.

The origins of unpredictability in life outcome prediction tasks

In-depth, qualitative interviews

- 73 respondents in 40 families
- Separate interviews with the youth and primary caregiver
- Life history of the youth from birth to the interview (\approx age 18)

Irreducible error

Zero Irreducible Error

Irreducible error is zero if each feature value maps to **one** outcome value

Non-Zero Irreducible Error

Irreducible error is non-zero if at least one feature value maps to **multiple** outcome values

Unmeasurable features occur after the feature observation window

Bella: A lasting event

- Bella: A lasting event
 - after age 9, her father died

- Bella: A lasting event
 - after age 9, her father died
 - high school went off course

- Bella: A lasting event
 - after age 9, her father died
 - high school went off course
- Charles: A fleeting event

- Bella: A lasting event
 - after age 9, her father died
 - high school went off course
- Charles: A fleeting event
 - online high school

- Bella: A lasting event
 - after age 9, her father died
 - high school went off course
- Charles: A fleeting event
 - online high school
 - worked in the basement for one semester

- Bella: A lasting event
 - after age 9, her father died
 - high school went off course
- Charles: A fleeting event
 - online high school
 - worked in the basement for one semester
 - video games = bad grades that semester

Lola's social network

Lola's social network

elderly neighbor got Lola ready for school each day

Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola

Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola
- aunt employed Lola's mother in a family business

Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola
- aunt employed Lola's mother in a family business

Predicted GPA: 3.04

Actual GPA: 3.75

Zero Irreducible Error

Feature is measured,

Non-Zero Irreducible Error

Feature is unmeasured,

How close do you feel to your mom? Would you say ...

Extremely close,	. 1
Quite close	
Fairly close, or,	. 3
Not very close?	. 4
REFUSED	
DON'T KNOW	

How close do you feel to your mom? Would you say...

xtremely close,	1
uite close	
airly close, or,	3
lot very close?	
REFUSED	
DON'T KNOW	

A daughter told us about her "not very close" mother

How close do you feel to your mom? Would you say...

Extremely close,	1
Quite close	
Fairly close, or,	3
Not very close?	
REFUSED	
DON'T KNOW	

A daughter told us about her "not very close" mother

- kicked her out of the house and called police
- mother: "you better start treating me better, because I might not live that long.''
- daughter: "I couldn't even focus in class... I was shaking.' '

Outcome: Failed 8th grade. Low GPA. Dropped out.

Zero Irreducible Error

Granular measurement,

Non-Zero Irreducible Error

Coarse measurement,

Zero Irreducible Error

Non-Zero Irreducible Error

Unmeasurable features

Events after the feature observation window create outcome variance

With intervening events,

Unmeasured features

A measurable feature could distinguish units with highly disparate outcomes

Imperfectly-measured features

A feature is measured in coarse categories

Granular measurement,

Feature is unmeasured,

Coarse measurement,

DISCUSSION

Generalizing to other life outcome prediction tasks

life outcome predictions may be inaccurate

- if generated by algorithms
- if generated by humans

life outcome predictions may be inaccurate

- if generated by algorithms
- if generated by humans
- from accuracy to impact evaluations

old goal: between-group variability

how means vary across groups

old goal: between-group variability

- how means vary across groups
- new goal: within-group variability
 - how variances vary across groups

old goal: between-group variability

how means vary across groups

new goal: within-group variability

- how variances vary across groups
- more work to better understand unpredictability
 - empirical estimates
 - formal models

Learning goals for today

By the end of class, you will be able to

- know who had the best predictions!
- reason about predictability of life outcomes