Studying Social Inequality with Data Science

Predicting life outcomes
Results of the PSID Income Prediction Challenge

Learning goals for today

By the end of class, you will be able to

- know who had the best predictions!
- reason about predictability of life outcomes

Equality Opportunity and Prediction

Possible claim

To the degree that we can predict life outcomes, people do not have equal opportunity

Equality Opportunity and Prediction

The model selection problem

In supervised machine learning, the goal is to

- learn patterns in the available data
- predict outcomes for previously unseen cases

The model selection problem

When a task involves unseen data, mimic the task with data we have

The model selection problem

The model selection problem

Predictor Variables

Outcomes

Prepare environment

library (tidyverse)
library (rsample)
set.seed(14850)

Load data

learning <- read_csv("learning.csv")
holdout_public <- read_csv("holdout_public.csv")

Create a train-test split within learning

Using the rsample package,

```
split <- learning |>
    initial_split(prop = 0.5)
```


Learn candidates in the train set

```
candidate_1 <- lm(
    g3_log_income ~ g2_log_income,
    data = training(split)
)
candidate_2 <- lm(
    g3_log_income ~ g2_log_income + race + sex,
    data = training(split)
)
candidate_3 <- lm(
    g3_log_income ~ g2_log_income * race * sex,
    data = training(split)
)
```


Learn candidates in the train set

Evaluate performance on the test set. Choose a model

```
fitted |>
    group_by(model) |>
    mutate(error = g3_log_income - yhat) |>
    mutate(squared_error = error ^ 2) |>
    summarize(mse = mean(squared_error))
```

\#\# \# A tibble: 3 x 2
\#\# model mse
\#\# <chr> <dbl>
\#\# 1 candidate_1 0.439
\#\# 2 candidate_2 0.437
\#\# 3 candidate_3 0.477

Apply your chosen model

Learn in the full learning set

```
chosen <- lm(
    g3_log_income ~ g2_log_income +
        race + sex,
    data = learning
)
```

Predict for the holdout set

```
predicted <- holdout_public %>%
```

 mutate(
 predicted = predict(
 chosen,
 newdata = holdout_public
)
)

Summary

Predictor Variables

Predictor Variables

Outcomes

Outcomes

Your submissions

- 21 submissions
- 20 submissions predicting for all holdout cases
- 17 submissions with non-missing predictions
- 14 submissions by unique teams

Distribution of MSE for Models

$$
R^{2}=1-\frac{\text { MSE }_{\text {Model }}}{\mathrm{MSE}_{\text {No Model }}}
$$

- score of $1=$ perfect! $\mathrm{MSE}_{\text {Model }}=0$
- score of $0=$ no better than no model at all

How would you make sense of this?
our exercise was a particular case of a broader research project

Measuring the predictability of life outcomes with a scientific mass collaboration

Matthew J. Salganik ${ }^{\text {a, } 1}$, Ian Lundberg ${ }^{\text {a }}{ }^{\circ}$, Alexander T. Kindel $^{\text {a }}$, Caitlin E. Ahearn ${ }^{\text {b }}$, Khaled AI-Ghoneim ${ }^{\text {c }}$, Debanjan Datta', Thomas Davidson ${ }^{\text {k }}$, Anna Filippova', Connor Gilroy ${ }^{m}$, Brian J. Goode ${ }^{\text {n }}$, Eaman Jahani ${ }^{\circ}$, Erik H. Wang ${ }^{2}$, Muna Adem ${ }^{\text {bb }}$, Abdulla Alhajrice, Bedoor AlSheblid ${ }^{\text {dd }}$, Redwane Amin ${ }^{\text {ee }}$, Ryan B. Amos ${ }^{\text {y }}$, Lisa P. Argyle ${ }^{\text {fff }}$ © Livia Baer-Bositis ${ }^{99}$, Moritz Büchi ${ }^{\text {hh }} \odot$, Bo-Ryehn Chung ${ }^{\text {ii, }}$, William Eggert ${ }^{\mathrm{jj}}$, Gregory Faletto ${ }^{\text {kk }}$, Zhilin Fan", Jeremy Freese ${ }^{\text {gg }}$, Tejomay Gadgil ${ }^{m m}$, Josh Gagnég ${ }^{g g}$, Yue Gao ${ }^{\text {nn }}$, Andrew Halpern-Manners ${ }^{\text {bb }}$, Sonia P. Hashim ${ }^{y}$, Sonia Hausen ${ }^{99}$, Guanhua $\mathrm{He}^{\text {oo }}$, Kimberly Higuera ${ }^{99}$, Bernie Hogan ${ }^{\text {pp }}$, Ilana M. Horwitz ${ }^{\text {q9, }}$, Lisa M. Hummel ${ }^{99}$, Naman Jain ${ }^{x}$, Kun Jin" ${ }^{\text {© }}$, David Jurgens ${ }^{\text {ss }}$, Patrick Kaminski ${ }^{\text {bb,tt, }}$, Areg Karapetyan ${ }^{\text {uu,vv }}$, E. H. Kim ${ }^{\text {g9, }}$, Ben Leizman ${ }^{y}$, Naijia Liu ${ }^{2}$, Malte Mösery ${ }^{y}$, Andrew E. Mack ${ }^{2}$, Mayank Mahajan ${ }^{y}$, Noah Mandell ${ }^{\text {ww }}$, Helge Marahrens ${ }^{\text {bb }}$, Diana Mercado-Garcia ${ }^{9 q}$, Viola Mocz ${ }^{\mathrm{xx}}$, Katariina Mueller-Gastell ${ }^{99}$, Ahmed Musse ${ }^{\mathrm{yy}}$, Qiankun Niu ${ }^{\text {ee }}$, William Nowak ${ }^{2 z}$, Hamidreza Omidvar ${ }^{\text {aaa, }}$, Andrew Ory ${ }^{\text {y }}$, Karen Ouyang ${ }^{\text {y }}$, Katy M. Pinto ${ }^{\text {bbb }}$, Ethan Porter ${ }^{\text {cce, Kristin E. Porter }{ }^{\text {ddd }} \text {, }}$ Crystal Qian ${ }^{y}$, Tamkinat Rauf ${ }^{99}$, Anahit Sargsyan ${ }^{\text {eee }}$, Thomas Schaffner ${ }^{y}$, Landon Schnabel ${ }^{99}$, Bryan Schonfeld ${ }^{2}$, James Wu ${ }^{\text {ooo }}$, Catherine Wu ${ }^{\text {y }}$, Kengran Yang ${ }^{\text {aaa }, ~ J i n g w e n ~ Y i n ", ~ B i n g y u ~ Z h a o ~}{ }^{\text {ppp }}$, Chenyun Zhul", Jeanne Brooks-Gunn ${ }^{\text {qqq,rrr }}$, Barbara E. Engelhardty ${ }^{\text {yii }}$, Moritz Hardt ${ }^{\text {sss }}$, Dean Knox ${ }^{2}$, Karen Levy ${ }^{\text {tt }}$, Arvind Narayanan ${ }^{\text {y }}$, Brandon M. Stewart ${ }^{\text {a }}$, Duncan J. Watts ${ }^{u u u, v v v, w w w}{ }^{\circ}$, and Sara McLanahan ${ }^{\text {a,1 }}$

Birth Age 1 Age 3 Age 5 Age 9

Core
mother
survey

Birth Age 1 Age 3 Age 5 Age 9 Age 15

Six age 15 outcomes:

- GPA
- Material Hardship
- Grit
- Evicted
- Job training
- Job loss

441 registered participants

- social scientists and data scientists
- undergraduates, grad students, and professionals
- many working in teams

How did they do?
0.6

Accuracy ($R_{\text {Holdout }}^{2}$)

$$
R_{\text {Holdout }}^{2}=1-\frac{\sum_{i \in \text { Holdout }}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i \in \text { Holdout }}\left(y_{i}-\bar{y}_{\text {Training }}\right)^{2}}
$$

0.4
0.2

Life outcome

Best algorithms were not very accurate

0.8
0.6

Accuracy
($R_{\text {Holdout }}^{2}$)
0.4

Life outcome

Best algorithms were not very accurate

Perfect algorithm

Life outcome

Best algorithms were not very accurate

Perfect algorithm

Life outcome

Best algorithms were not very accurate

Perfect algorithm

Life outcome

Best algorithms were not very accurate

0.8
0.6

Accuracy
($R_{\text {Holdout }}^{2}$)
0.4

Life outcome

Best algorithms were not very accurate

0.8
0.6

Accuracy
($R_{\text {Holdout }}^{2}$)
0.4

Life outcome

Lundberg et al. 2024.
The origins of unpredictability in life outcome prediction tasks

In-depth, qualitative interviews

- 73 respondents in 40 families
- Separate interviews with the youth and primary caregiver
- Life history of the youth from birth to the interview (\approx age 18)

Irreducible error

Zero Irreducible Error

Irreducible error is zero if each feature value maps to one outcome value

Non-Zero Irreducible Error

Irreducible error is non-zero if at least one feature value maps to multiple outcome values

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

- Bella: A lasting event

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

- Bella: A lasting event
- after age 9, her father died

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

- Bella: A lasting event
- after age 9, her father died
- high school went off course

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

- Bella: A lasting event
- after age 9, her father died
- high school went off course
- Charles: A fleeting event

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

- Bella: A lasting event
- after age 9, her father died
- high school went off course
- Charles: A fleeting event
- online high school

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

- Bella: A lasting event
- after age 9, her father died
- high school went off course
- Charles: A fleeting event
- online high school
- worked in the basement for one semester

Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

- Bella: A lasting event
- after age 9, her father died
- high school went off course
- Charles: A fleeting event
- online high school
- worked in the basement for one semester
- video games $=$ bad grades that semester

Irreducible error: Unmeasurable features

Zero Irreducible Error

Non-Zero Irreducible Error

Without intervening events,

With intervening events,

Irreducible error: Unmeasured features

Irreducible error: Unmeasured features

Lola's social network

Irreducible error: Unmeasured features

Lola's social network

- elderly neighbor got Lola ready for school each day

Irreducible error: Unmeasured features

Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola

Irreducible error: Unmeasured features

Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola
- aunt employed Lola's mother in a family business

Irreducible error: Unmeasured features

Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola
- aunt employed Lola's mother in a family business

Predicted GPA: 3.04
Actual GPA: 3.75

Irreducible error: Unmeasured features

Zero Irreducible Error

Feature is measured,

Non-Zero Irreducible Error

Feature is unmeasured,

Irreducible error: Imperfectly measured features

Irreducible error: Imperfectly measured features

How close do you feel to your mom? Would you say..
Extremely close, 1
Quite close, 2
Fairly close, or, 3
Not very close? 4
REFUSED -1
DON'T KNOW -2

Irreducible error: Imperfectly measured features

How close do you feel to your mom? Would you say...
Extremely close, 1
Quite close, 2
Fairly close, or, 3
Not very close? 4
REFUSED -1
DON'T KNOW -2

A daughter told us about her "not very close" mother

Irreducible error: Imperfectly measured features

How close do you feel to your mom? Would you say...

Extremely close, .. 1
Quite close,... 2
Fairly close, or, ... 3
Not very close?... 4
REFUSED .. -1
DON'T KNOW .. -2

A daughter told us about her "not very close" mother

- kicked her out of the house and called police
- mother: "you better start treating me better, because I might not live that long.' '
- daughter: "I couldn't even focus in class...I was shaking.' '

Outcome: Failed 8th grade. Low GPA. Dropped out.

Irreducible error: Imperfectly measured features

Zero Irreducible Error

Granular measurement,

Non-Zero Irreducible Error

Coarse measurement,

Unmeasurable features

Events after the feature observation window create outcome variance

Without intervening events,

Feature is measured,

Granular measurement,

With intervening events,

Feature is unmeasured,

Coarse measurement,

DISCUSSION

Generalizing to other life outcome prediction tasks

Implications for policy

Implications for policy

- life outcome predictions may be inaccurate

Implications for policy

- life outcome predictions may be inaccurate
- if generated by algorithms
- if generated by humans

Implications for policy

- life outcome predictions may be inaccurate
- if generated by algorithms
- if generated by humans
- from accuracy to impact evaluations

Implications for science

Implications for science

- old goal: between-group variability
- how means vary across groups

Implications for science

- old goal: between-group variability
- how means vary across groups
- new goal: within-group variability
- how variances vary across groups

Implications for science

- old goal: between-group variability
- how means vary across groups
- new goal: within-group variability
- how variances vary across groups
- more work to better understand unpredictability
- empirical estimates
- formal models

Learning goals for today

By the end of class, you will be able to

- know who had the best predictions!
- reason about predictability of life outcomes

