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Learning goals for today

By the end of class, you will be able to

▶ know who had the best predictions!
▶ reason about predictability of life outcomes



Equality Opportunity and Prediction

Possible claim

To the degree that we can predict life outcomes,

people do not have equal opportunity
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The model selection problem

In supervised machine learning, the goal is to

▶ learn patterns in the available data
▶ predict outcomes for previously unseen cases
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The model selection problem

When a task involves unseen data,

mimic the task with data we have
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The model selection problem
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Prepare environment

library(tidyverse)
library(rsample)
set.seed(14850)



Load data

learning <- read_csv("learning.csv")
holdout_public <- read_csv("holdout_public.csv")



Create a train-test split within learning

Using the rsample package,
split <- learning |>

initial_split(prop = 0.5)
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Learn candidates in the train set

candidate_1 <- lm(
g3_log_income ~ g2_log_income,
data = training(split)

)
candidate_2 <- lm(

g3_log_income ~ g2_log_income + race + sex,
data = training(split)

)
candidate_3 <- lm(

g3_log_income ~ g2_log_income * race * sex,
data = training(split)

)
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Evaluate performance on the test set. Choose a model

fitted |>
group_by(model) |>
mutate(error = g3_log_income - yhat) |>
mutate(squared_error = error ˆ 2) |>
summarize(mse = mean(squared_error))

## # A tibble: 3 x 2
## model mse
## <chr> <dbl>
## 1 candidate_1 0.439
## 2 candidate_2 0.437
## 3 candidate_3 0.477
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Apply your chosen model

Learn in the full learning set
chosen <- lm(

g3_log_income ~ g2_log_income +
race + sex,

data = learning
)

Predict for the holdout set
predicted <- holdout_public %>%

mutate(
predicted = predict(

chosen,
newdata = holdout_public

)
)
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Your submissions

▶ 21 submissions
▶ 20 submissions predicting for all holdout cases
▶ 17 submissions with non-missing predictions
▶ 14 submissions by unique teams



0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Performance Rank

M
ea

n 
S

qu
ar

ed
 E

rr
or

(H
ol

do
ut

)
Distribution of MSE for Models



R2 = 1 − MSEModel
MSENo Model

▶ score of 1 = perfect! MSEModel = 0
▶ score of 0 = no better than no model at all
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How would you make sense of this?



our exercise was a particular case

of a broader research project



Measuring the predictability of life outcomes with
a scientific mass collaboration
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How predictable are life trajectories? We investigated this ques-
tion with a scientific mass collaboration using the common task
method; 160 teams built predictive models for six life outcomes
using data from the Fragile Families and Child Wellbeing Study, a
high-quality birth cohort study. Despite using a rich dataset and
applying machine-learning methods optimized for prediction, the
best predictions were not very accurate and were only slightly
better than those from a simple benchmark model. Within each
outcome, prediction error was strongly associated with the family
being predicted and weakly associated with the technique used
to generate the prediction. Overall, these results suggest practical
limits to the predictability of life outcomes in some settings and
illustrate the value of mass collaborations in the social sciences.

life course | prediction | machine learning | mass collaboration

Social scientists studying the life course have described social
patterns, theorized factors that shape outcomes, and esti-

mated causal effects. Although this research has advanced sci-
entific understanding and informed policy interventions, it is
unclear how much it translates into an ability to predict indi-
vidual life outcomes. Assessing predictability is important for
three reasons. First, accurate predictions can be used to target
assistance to children and families at risk (1, 2). Second, pre-
dictability of a life outcome from a person’s life trajectory can
indicate social rigidity (3), and efforts to understand differences
in predictability across social contexts can stimulate scientific dis-
covery and improve policy-making (4). Finally, efforts to improve
predictive performance can spark developments in theory and
methods (5).

In order to measure the predictability of life outcomes for
children, parents, and households, we created a scientific mass
collaboration. Our mass collaboration—the Fragile Families
Challenge—used a research design common in machine learn-
ing but not yet common in the social sciences: the common task
method (6). To create a project using the common task method,
an organizer designs a prediction task and then recruits a large,
diverse group of researchers who complete the task by predicting
the exact same outcomes using the exact same data. These pre-

dictions are then evaluated with the exact same error metric that
exclusively assesses their ability to predict held-out data: data
that are held by the organizer and not available to participants.
Although the structure of the prediction task is completely stan-
dardized, participants are free to use any technique to generate
predictions.

The common task method produces credible estimates of
predictability because of its design. If predictability is higher
than expected, the results cannot be dismissed because of con-
cerns about overfitting (7) or researcher degrees of freedom (8).
Alternatively, if predictability is lower than expected, the results
cannot be dismissed because of concerns about the limitations
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Six age 15 outcomes:

▶ GPA
▶ Material Hardship
▶ Grit
▶ Evicted
▶ Job training
▶ Job loss





441 registered participants

▶ social scientists and data scientists

▶ undergraduates, grad students, and professionals

▶ many working in teams



How did they do?
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i∈Holdout(yi −ȳTraining)2
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Lundberg et al. 2024.

The origins of unpredictability in life outcome prediction tasks

https://doi.org/10.48550/arXiv.2310.12871
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In-depth, qualitative interviews

▶ 73 respondents in 40 families

▶ Separate interviews with the youth and primary caregiver

▶ Life history of the youth from birth to the interview (≈ age 18)
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Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window

▶ Bella: A lasting event
▶ after age 9, her father died
▶ high school went off course

▶ Charles: A fleeting event
▶ online high school
▶ worked in the basement for one semester
▶ video games = bad grades that semester
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Irreducible error: Unmeasured features

Lola’s social network

▶ elderly neighbor got Lola ready for school each day

▶ grandparents remodeled the basement to house Lola

▶ aunt employed Lola’s mother in a family business

Predicted GPA: 3.04 Actual GPA: 3.75
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Irreducible error: Imperfectly measured features

A daughter told us about her “not very close” mother

▶ kicked her out of the house and called police
▶ mother: “you better start treating me better, because I might

not live that long.’ ’
▶ daughter: “I couldn’t even focus in class. . . I was shaking.’ ’

Outcome: Failed 8th grade. Low GPA. Dropped out.
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Generalizing to other life outcome prediction tasks
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Implications for policy

▶ life outcome predictions may be inaccurate
▶ if generated by algorithms
▶ if generated by humans

▶ from accuracy to impact evaluations
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Implications for science

▶ old goal: between-group variability
▶ how means vary across groups

▶ new goal: within-group variability
▶ how variances vary across groups

▶ more work to better understand unpredictability
▶ empirical estimates
▶ formal models
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Learning goals for today

By the end of class, you will be able to

▶ know who had the best predictions!
▶ reason about predictability of life outcomes


