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Learning goals for today

By the end of class, you will be able to

» know who had the best predictions!
P reason about predictability of life outcomes



Equality Opportunity and Prediction

Possible claim
To the degree that we can predict life outcomes,

people do not have equal opportunity
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The model selection problem

In supervised machine learning, the goal is to

» learn patterns in the available data
» predict outcomes for previously unseen cases
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The model selection problem

When a task involves unseen data,

mimic the task with data we have



The model selection problem
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Prepare environment

library(tidyverse)
library(rsample)
set.seed(14850)



Load data

learning <- read_csv("learning.csv")
holdout_public <- read_csv("holdout_public.csv")



Create a train-test split within learning

Using the rsample package,

split <- learning |>
initial_split(prop = 0.5)
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Learn candidates in the train set

candidate_1 <- 1m(
g3_log_income ~ g2_log_income,
data = training(split)

)

candidate_2 <- 1m(
g3_log_income ~ g2_log_income + race + sex,
data = training(split)

)

candidate_3 <- 1m(
g3_log_income ~ g2_log_income * race * sex,
data = training(split)



Learn candidates in the train set
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Evaluate performance on the test set. Choose a model

fitted |>
group_by(model) |>
mutate (error = g3_log_income - yhat) |[>
mutate(squared_error = error ~ 2) [>
summarize (mse = mean(squared_error))

## # A tibble: 3 x 2

## model mse
## <chr> <dbl>
## 1 candidate_1 0.439
## candidate_2 0.437
## 3 candidate_3 0.477

N
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Apply your chosen model

Learn in the full learning set
chosen <- 1m(
g3_log_income ~ g2_log_income +
race + sex,
data = learning

)

Predict for the holdout set
predicted <- holdout_public %>

mutate (
predicted = predict(
chosen,
newdata = holdout_public
)



Summary
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Your submissions

» 21 submissions

» 20 submissions predicting for all holdout cases
P 17 submissions with non-missing predictions
» 14 submissions by unique teams
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MSEmodel

R2 =1 _OEModel
MSEnNo Model

» score of 1 = perfect! MSEpmodel = 0
» score of 0 = no better than no model at all



Distribution of R? for Models
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our exercise was a particular case

of a broader research project



Measuring the predictability of life outcomes with
a scientific mass collaboration
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https://doi.org/10.1073/pnas.1915006117
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Six age 15 outcomes:

> GPA
» Material Hardship
» Grit

» Evicted

» Job training

» Job loss



4,200 families
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441 registered participants
P social scientists and data scientists
» undergraduates, grad students, and professionals

> many working in teams



How did they do?
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Lundberg et al. 2024.

The origins of unpredictability in life outcome prediction tasks


https://doi.org/10.48550/arXiv.2310.12871
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In-depth, qualitative interviews
» 73 respondents in 40 families
» Separate interviews with the youth and primary caregiver

» Life history of the youth from birth to the interview (~ age 18)
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Irreducible error
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Irreducible error: Unmeasurable features
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Irreducible error: Unmeasurable features

Unmeasurable features occur after the feature observation window
> Bella: A lasting event
> after age 9, her father died
> high school went off course
» Charles: A fleeting event
» online high school
» worked in the basement for one semester

> video games = bad grades that semester



Irreducible error: Unmeasurable features
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Irreducible error: Unmeasured features

Lola's social network
> elderly neighbor got Lola ready for school each day
» grandparents remodeled the basement to house Lola
» aunt employed Lola's mother in a family business

Predicted GPA: 3.04 Actual GPA: 3.75
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Irreducible error: Imperfectly measured features
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Irreducible error: Imperfectly measured features

How close do you feel to your mom? Would you say...

EXIremely CIOSE, .....oooeiiiiee e 1
QUILE ClOSE, ... . ettt e ee e e e ee e e e st ee e e e e e ennraeeeeean 2
Fairly ClOSE, OF, .....eeiieeeeeee et 3
NOL VEIY CIOSE? ...ttt s e 4
REFUSED ...ttt ettt et s e s a s e s te e enneete e nns -1
DON'T KNOW ..ottt ettt e e e b e e eae e eaeeeana e eanas -2

A daughter told us about her “not very close” mother

> kicked her out of the house and called police

> mother: “you better start treating me better, because | might
not live that long."’

» daughter: “l couldn’t even focus in class. .. | was shaking.'’

Outcome: Failed 8th grade. Low GPA. Dropped out.
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DISCUSSION



Generalizing to other life outcome prediction tasks
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Implications for policy

> life outcome predictions may be inaccurate
> if generated by algorithms

» if generated by humans

> from accuracy to impact evaluations
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Implications for science

» old goal: between-group variability
» how means vary across groups

> new goal: within-group variability
» how variances vary across groups

> more work to better understand unpredictability
» empirical estimates

» formal models



Learning goals for today

By the end of class, you will be able to

» know who had the best predictions!
P reason about predictability of life outcomes



