Studying Social Inequality with Data Science

Statistical Learning

Learning goals for today

By the end of class, you will be able to

- use statistical learning to estimate when data are sparse
- work with models that are "wrong"

statistical learning: the idea

illustrated by a

- discrete numeric predictor
- continuous numeric predictor

With only the sample, how would you estimate the mean salary of all the Dodgers?

Past Win-Loss Record

Sample: 5 per team

Three estimators for the Dodgers' mean salary

Estimator 1: Subgroup sample mean

Three estimators for the Dodgers' mean salary

Estimator 2: Full sample mean

Three estimators for the Dodgers' mean salary

Estimator 3: Regression prediction

Three estimators for the Dodgers' mean salary

Estimator 1: Subgroup sample mean

Estimator 2: Full sample mean

Estimator 3: Regression prediction

Three estimators for the Dodgers' mean salary

Estimator 1: Subgroup sample mean

Past Win-Loss Record

Estimator 2: Full sample mean

Estimator 3: Regression prediction

Which do you prefer? Why is your choice a little weird?

Statistical learning: A somewhat unusual view

Statistical learning: A somewhat unusual view

1. the entire goal of modeling is to solve sparse data

- we sample very few Dodgers, so we use non-Dodgers to help our estimate

Statistical learning: A somewhat unusual view

1. the entire goal of modeling is to solve sparse data

- we sample very few Dodgers, so we use non-Dodgers to help our estimate

2. in a huge sample, a model is unnecessary

- estimate Dodger population mean by the Dodger sample mean

Statistical learning: A somewhat unusual view

1. the entire goal of modeling is to solve sparse data

- we sample very few Dodgers, so we use non-Dodgers to help our estimate

2. in a huge sample, a model is unnecessary

- estimate Dodger population mean by the Dodger sample mean

3. in a tiny sample, models may perform poorly

- might even better to estimate a subgroup mean (Dodgers) by taking the mean of the whole sample (all MLB)

statistical learning: the idea

illustrated by a

- discrete numeric predictor
- continuous numeric predictor

What is the mean 2023 salary among players who in 2021 earned $\$ 5-10$ million?

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Begin with the population

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

Method: Sample subgroup mean

Sample
Sample average

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionHow would you use a model?

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionBegin with the population

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionDraw a sample

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionLearn a model

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionFocus on the target population

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionPredict

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionPredict

Record the average

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Begin with the population

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Draw a sample

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Learn a model

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionFocus on the target population

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares prediction
Predict

Goal: Estimate a target population mean from a sample

 Method: Ordinary Least Squares predictionPredict

Record the average

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Goal: Estimate a target population mean from a sample

Method: Ordinary Least Squares prediction

Ordinary Least Squares strategy:

1. Sample from the population
2. Learn a model
3. Record the average prediction in the target subgroup

Goal: Estimate a target population mean from a sample

How would you do this with machine learning?

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Begin with the population

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Draw a sample

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Learn a model

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Focus on the target population

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Predict

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Predict

Record the average

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Begin with the population

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Draw a sample

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Learn a model

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Focus on the target population

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Predict

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Predict

Record the average

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Goal: Estimate a target population mean from a sample

Method: Generalized Additive Model prediction

Comparing the estimators

Comparing the estimators

Comparing the estimators

Comparing the estimators

Comparing the estimators

Sim.

Comparing the estimators

$$
\begin{aligned}
& (\hat{\theta}-\theta)=(\hat{\theta}-\mathrm{E}(\hat{\theta}))+(\mathrm{E}(\hat{\theta})-\theta)
\end{aligned}
$$

Comparing the estimators

Comparing the estimators

$$
\begin{array}{r}
E\left[(\hat{\theta}-\theta)^{2}\right]=E\left[(\hat{\theta}-E(\hat{\theta}))^{2}\right]+E\left[(E(\hat{\theta})-\theta)^{2}\right] \\
+2 E[(\hat{\theta}-E(\hat{\theta}))(E(\hat{\theta})-\theta)]
\end{array}
$$

Comparing the estimators

$$
\begin{aligned}
& \mathrm{E}\left[(\hat{\theta}-\theta)^{2}\right]=\mathrm{E}\left[(\hat{\theta}-\mathrm{E}(\hat{\theta}))^{2}\right]+\mathrm{E}\left[(\mathrm{E}(\hat{\theta})-\theta)^{2}\right] \\
&+2 \mathrm{E}[(\hat{\theta} \mathrm{E}(\hat{\theta}))(\mathrm{E}(\hat{\theta})-\theta)]=0
\end{aligned}
$$

Comparing the estimators

some statistical learning algorithms

Ordinary Least Squares

$$
\hat{Y}_{i}=\hat{\alpha}+\hat{\beta} X_{i} \text { with } \hat{\alpha} \text { and } \hat{\beta} \text { chosen to minimize } \underbrace{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}_{\text {Squared Error }}
$$

Penalized regression

$\hat{Y}_{i}=\hat{\alpha}+\hat{\beta} X_{i}$ with $\hat{\alpha}$ and $\hat{\beta}$ chosen to minimize

$$
\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}_{\text {Squared Error }}+\underbrace{\lambda \beta^{2}}_{\text {Penalty }}
$$

Penalized regression

$\hat{\gamma}_{i}=\hat{\alpha}+\hat{\beta} X_{i}$ with $\hat{\alpha}$ and $\hat{\beta}$ chosen to minimize

$$
\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}_{\text {Squared Error }}+\underbrace{\lambda \beta^{2}}_{\text {Penalty }}
$$

Penalized regression

$\hat{Y}_{i}=\hat{\alpha}+\hat{\beta} X_{i}$ with $\hat{\alpha}$ and $\hat{\beta}$ chosen to minimize

$$
\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}_{\text {Squared Error }}+\underbrace{\lambda \beta^{2}}_{\text {Penalty }}
$$

Penalized regression

$\hat{Y}_{i}=\hat{\alpha}+\hat{\beta} X_{i}$ with $\hat{\alpha}$ and $\hat{\beta}$ chosen to minimize

$$
\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}_{\text {Squared Error }}+\underbrace{\lambda \beta^{2}}_{\text {Penalty }}
$$

ols regression penalized regression
standard tool
OLS with reduced variance

Splines

Regression with some terms estimated locally in regions of the data separated by knots

Splines

Regression with some terms estimated locally in regions of the data separated by knots

Quadratic spline

Splines

Regression with some terms estimated locally in regions of the data separated by knots

ols regression
penalized regression splines
standard tool
OLS with reduced variance capture smooth nonlinearity

Decision tree

Assume the response is locally flat
Find places where it jumps

ols regression standard tool
penalized regression OLS with reduced variance splines
trees
capture smooth nonlinearity capture discrete nonlinearity

working with imperfect models

Drawing on Berk 2020.
Statistical Learning from a Regression Perspective

The model is wrong. Why might we still use it?

Estimation Using a Linear Function

Learning goals for today

By the end of class, you will be able to

- use statistical learning to estimate when data are sparse
- work with models that are "wrong"

