Studying Social Inequality with Data Science

INFO 3370 / 5371 Spring 2024

Sampling: Stratified, Clustered, and the Future

Learning goals for today

By the end of class, you will be able to

- ► sample from a population in R
- write an estimator function
- apply the function to your sample
- connect sampling to the replication crisis
- discuss the future of sampling

BASERALL	The New York Eimes	= Sections		Los Angeles Times	SUBSCRIBE	LOG IN	٩
	Channeling the Old Steinbrenner Ways, Yankees Stepped Up for Judge Aaron-Jodge, which is & home mans in 2022, agreed to a nine- year, 5597 million contact with the Yankees after meeting with at least two other teams.	© Dodgers news	Teoscar Hernández	Cattornia denaming Dodgers pitchers rising osciolis age: Shohei Ohtani sigr Dodgers	s si billion boon?	al with	1
ť,		بو [• •	Dest	Dodg	ends	
	EN VORA	D		Ledgers 17	A Guessin	HEIM	

Aaron Judge set career highs in batting average (311), home runs (62) and R.B.I. (331) in 2022. Chris-Daman for The New York Times

New Contraction

Shohei Ohtani speaks during his introductory Dodgers news conference at Dodger Stadium on Thursday. (Wally Skalij / Los Angeles Times)

BY LOS ANGELES TIMES STAFF PUBLISHED DEC. 9, 2023 | UPDATED DEC. 22, 2023 8:54 AM PT

BASERALL	The New York Times	E Sections		Los Ang	eles Times	SUBSCRIBE	LOG IN	٩
	Channeling the Old Steinbrenner Ways, Yankees Stepped Up for Judge Aron Judge, who hit & Done runs in 2022, agreed to a nine- year, 3500 million contract with the Yankees after meeting with at least two other tearms.	© Dadgars news Comp	lete cover	caifernia deeaming	Dodgers pitchers rising Toops Ohtani sign odgers	st billion boon?	al with	1
ť			A	Dedge	Jean Alexandree	Dogo	ers	
	Star YORA	De	A A	Fed	gers	A GUEGER	HEIM	

Aaron Judge set career highs in batting average (.311), home runs (62) and R.B.I. (131) in 2022. Chris-Denovan for The New York Times

Shohei Ohtani speaks during his introductory Dodgers news conference at Dodger Stadium on Thursday. (Wally Skalij / Los Angeles Times)

BY LOS ANGELES TIMES STAFF PUBLISHED DEC. 9: 2023 I UPDATED DEC. 22: 2023 8:54 AM PT

Major League Baseball Minimum: \$720,000

Major League Baseball Salaries 2023

Major League Baseball salaries based on players on opening day rosters and injured list and restricted list. Figures, compiled by USA TODAY, are based on documents obtained from Major League Baseball, the MLB Players Association, clubs officials and agents, filed with MLB's central office. Deferred psymetra and incentive clauses are not included. See more salaries for 2022.

searce: USA TOLIAN sports						
Quick Search						
Player	► Team	~	Position	~	Search	
					Show/Hide Columns	
Player	∨ Team ∨	Position	✓ Salary ✓	Years	✓ Total Value ✓	
Scherzer, Max	N.Y. Mets	RHP	\$43,333,333	3	\$130,000,000	
Verlander, Justin	N.Y. Mets	RHP	\$43,333,333	2	\$86,666,666	
Judge, Aaron	N.Y. Yankees	OF	\$40,000,000	9	\$360,000,000	
Rendon, Anthony	L.A. Angels	3	\$38,571,429	7	\$245,000,000	
Trout, Mike	L.A. Angels	OF	\$37,116,667	12	\$426,500,000	

databases.usatoday.com/major-league-baseball-salaries-2023/

N.Y. Mets -N.Y. Yankees Philadelphia · Toronto San Diego L.A. Angels Texas L.A. Dodgers Houston · Atlanta · Chicago White Sox St. Louis -San Francisco -Chicago Cubs Team Boston Colorado · Seattle Minnesota Detroit · Arizona Milwaukee Washington Miami Cleveland Kansas Citv Tampa Bay Pittsburgh -Baltimore Cincinnati Oakland -\$0 \$2,500,000 \$5,000,000 \$7,500,000 \$10,000,000 Mean Salary

Draw a Sample to Estimate the Mean Salary

baseball <- read_csv("https://info3370.github.io/data/baseball.csv")</pre>

How would you design:

- Simple random sample of 60 players
- Random sample stratified by team
- Random sample clustered by team

and why would you do it each way?

Stuck? See last week's reading

Draw a Sample to Estimate the Mean Salary

simple random sampling stratified sampling clustered sampling 60 players chosen at random 2 players on each of the 30 teams 20 players on 3 sampled teams

Write a function that I like to call estimator()

- ▶ input is a sample
- output is an estimate

We will first calculate the population mean

Then we will repeatedly

- ► draw a sample
- ► apply the estimator
- ► store the result

Three sampling strategies

Danger of One Sample

Sample of 40 Pitchers from Opening Day 2023

Why might right-handed pitchers earn more?

Your turn

- Ioad the data
- take a sample of size 40
- group by position
- summarize the mean salary

Who has higher average salary in your sample?

- ▶ RHP: right-handed pitchers
- ► LHP: left-handed pitchers

I did this 1,000 times

Distribution of Sample Estimates

6% of sample estimates are statistically significant

Distribution of Sample Estimates 6% of sample estimates are statistically significant

Distribution of Sample Estimates 6% of sample estimates are statistically significant

 unless we see the population, all estimates involve noise

Distribution of Sample Estimates 6% of sample estimates are statistically significant

- unless we see the population, all estimates involve noise
- surprising findings yield big rewards

Distribution of Sample Estimates 6% of sample estimates are statistically significant

- unless we see the population, all estimates involve noise
- surprising findings yield big rewards
- unsurprising findings get ignored

Distribution of Sample Estimates 6% of sample estimates are statistically significant

- unless we see the population, all estimates involve noise
- surprising findings yield big rewards
- unsurprising findings get ignored
- science is just discovering noise

Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect

Daryl J. Bem Cornell University

SCIENCE

Daryl Bem Proved ESP Is Real

Which means science is broken.

BY DANIEL ENGBER

JUNE 07, 2017 • 2:57 PM

Slate link.

nature human behaviour

LETTERS

Evaluating the replicability of social science experiments in *Nature* and *Science* between 2010 and 2015

Colin F. Camerer¹¹, Anna Dreber²⁴, Felix Holzmeister²⁰ ¹¹, Teck-Hua Ho¹¹, Jürgen Huber¹⁴, Magnus Johannesson ²⁰¹⁵, Michael Kirchler²¹¹⁰, Gideon Nare¹⁰, Brian A. Nosek^{20,310}, Thomas Pfelfer²⁰, Jadan Altmejd²⁰, Nick Butrick²¹, Taisatan Chari, Yingi Chern-Eskil Forsel¹¹, Amp Gampa²¹, Emma Heikensten², Lily Hummer¹, Jisisak Imal ²⁰, Siri Isaksson², Dyan Manfred¹¹, Julia Bose, Krich aw Magemanker³¹ and Hang Wu²

The New York Times

SCIENCE TIMES AT 40

Essay: The Experiments Are Fascinating. But Nobody Can Repeat Them.

Science is mired in a "replication" crisis. Fixing it will not be easy.

Camerer et al. in Nature Human Behavior.

Gelman in NYTimes.

Distribution of Sample Estimates 6% of sample estimates are statistically significant

- unless we see the population, all estimates involve noise
- surprising findings yield big rewards
- unsurprising findings get ignored
- science is just discovering noise

Danger of One Sample

Reproducibility

- ▶ use the whole population
- summarize salary grouped by team
- ▶ be ready to tell use your estimates and how you got them

title: "Problem Set 1: Visualization" format: pdf ---

Due: 5pm on Wednesday, January 31.

Student identifer: [type your anonymous identifying number here]

- Use this template to complete the problem set

- In Canvas, you will upload the PDF produced by your .qmd file

- Put your identifier above, not your name! We want anonymous grading to be possible

This problem set involves both data analysis and reading.

Data analysis

```
This problem set uses the data [`lifeCourse.csv`](https://info3370.github.io/data/lifeCourse.csv).
```

The data contain life course earnings profiles for four cohorts of American workers: those born in 1940, 1950, 1960, and 1970. Each row contains a

Danger of One Sample

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1930-1960: Era of Invention

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1930-1960: Era of Invention

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1930-1960: Era of Invention

DATAACCESS: We are updating our systems and plan to avoid interruptions. However, NASS data and reports are available in multiple ways in addition to this website - Cornell University Ma Ubrary (a USDA repository) website and e-mail report subscription service: CuickSists database. API, and downloadsble data files; and a USDN file for principal economic indicator data.

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1930-1960: Era of Invention

sampling frame

pieces of land

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1930-1960: Era of Invention

sampling frame mode

pieces of land face-to-face interviews

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1930-1960: Era of Invention

sampling frame mode cost pieces of land face-to-face interviews high

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1930-1960: Era of Invention

sampling frame pieces of land mode face-to-face interviews cost high response rate over 90 percent

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1960-1990: Era of Expansion

Technology helped: Telephones

Source: Wikimedia

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1960-1990: Era of Expansion

Technology helped: Telephones — sampling frame

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1960-1990: Era of Expansion

Technology helped: Telephones

- sampling frame
- mode of data collection

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1960-1990: Era of Expansion

Technology helped: Telephones

- sampling frame
- mode of data collection
- falling costs

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1960-1990: Era of Expansion

Technology helped: Telephones

- sampling frame
- mode of data collection
- falling costs
- falling response rates

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present

Technology brought challenges Technology brought opportunities

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present

Technology brought challenges Technology brought opportunities — answering machines

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present

Technology brought challenges Technology brought opportunities

- answering machines
- cell phones

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present

Technology brought challenges Technology brought opportunities

- answering machines
- cell phones
- caller ID

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990–Present

- answering machines
- cell phones
- caller ID
- response rates plummeted

Technology brought challenges Technology brought opportunities

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present

- Technology brought challenges
- answering machines
- cell phones
- caller ID
- response rates plummeted

Technology brought opportunities

- digital trace data
- internet panels

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present: Designed and Organic Data

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present: Designed and Organic Data

Designed data

Organic data

Example Census age distribution **Example** Web histories

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present: Designed and Organic Data

Designed data

— high cost

Organic data

— almost free

Example Census age distribution **Example** Web histories

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present: Designed and Organic Data

Designed data

- high cost
- becoming scarce

Organic data

- almost free
- becoming abundant

Example Census age distribution Example Web histories

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present: Designed and Organic Data

Designed data

- high cost
- becoming scarce
- speak to population

Example Census age distribution Organic data

- almost free
- becoming abundant
- iffy for population

Example Web histories

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present: Designed and Organic Data

Designed data

- high cost
- becoming scarce
- speak to population

Example Census age distribution Organic data

- almost free
- becoming abundant
- iffy for population

Example Web histories

future of organic data

future of designed data

Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly.

1990-Present: Designed and Organic Data

Designed data

— high cost

Example

- becoming scarce
- speak to population

Census age distribution

Organic data

— almost free

- becoming abundant
- iffy for population

Example Web histories

the future is together

Learning goals for today

By the end of class, you will be able to

- ► sample from a population in R
- write an estimator function
- apply the function to your sample
- connect sampling to the replication crisis
- discuss the future of sampling