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Causal inference:
Connections to statistical modeling



Learning goals for today

By the end of class, you will be able to

▶ connect causal inference (a missing data problem)

to statistical modeling (predicting missing data)



A running example

We should raise taxes on high earners to fund programs that seek
to correct injustice

▶ 1 = Agree

▶ 0 = Disagree

What is the average causal effect of taking this class
on preferences for taxation to reduce injustice?

▶ why might it be big?

▶ why might it be small?

▶ why is it hard to know the answer?
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Generalizing: Causal strategies in this domain

▶ instrumental variables

▶ regression discontinuity

▶ interrupted time series

These strategies identify causal effects
by focusing on a feasible subpopulation
where treatment assignment is well-understood
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Strategy 2: Find your look-alikes on relevant dimensions

For each of you, we could compare

1. your opinion after 3370

2. the average opinion of non-3370 students who look like you

On what dimensions should they look like you?
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Strategy 2: Find your look-alikes on relevant dimensions

Causal diagrams can help us reason about the adjustment set

▶ nodes are random variables

▶ edges are causal relationships
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To learn more about causal graphs, see Pearl & Mackenzie 2018

http://bayes.cs.ucla.edu/WHY/
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Strategy 2: Find your look-alikes on relevant dimensions

Benefits

▶ Full target population

Drawbacks

▶ May be less credible than approaches like the waitlist



Strategy 2: Generalizing to a model

Regression = Tool to predict data you don’t see

▶ we don’t see your outcome without 3370

Causal assumption: On average,

Y No 3370
You ≈ E(Y No 3370

Others | Look like you)

The right side can be modeled statistically
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In what settings

▶ is it important to ask a causal question about inequality?

▶ is it sufficient to ask a descriptive question?



Learning goals for today

By the end of class, you will be able to

▶ connect causal inference (a missing data problem)

to statistical modeling (predicting missing data)


